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1. Focus 
 
The focus of our project was on the subseasonal prediction of North Pacific blocking events, 
which represent a low-frequency weather extreme with large impacts both up- and downstream 
and is recognized as a significant forecast challenge for subseasonal numerical weather 
prediction (NWP). The project addressed several key questions of the MAPP S2S Project, cutting 
across the “Processes and Physics” and “Approaches to S2S Prediction” focus areas. The key 
questions in Processes and Physics being addressed are: 

• What are the dominant physical sources of S2S predictability, and how well are these 
sources simulated and predicted? 

• How do tropical/extra-tropical and stratosphere/troposphere connections influence S2S 
prediction? 

The key question in Approaches to S2S Prediction being addressed is: 
• What indices/metrics best describe extreme weather phenomena relevant to S2S 

prediction given the limitations in available model and observed variables? 
 
2. Introduction 
 
We approached this problem using dimension reduction and empirical modeling techniques 
wherein the physics that drive the evolution of blocking in the North Pacific are statistically 
inferred from the leading empirical orthogonal functions (EOFs) of a small subset of reanalysis 
variables. In our case, the physics that drive North Pacific blocking are inferred from three 
variables: northern hemispheric 850 hPa streamfunction, northern hemispheric 200 hPa 
streamfunction – which represent lower- and upper-tropospheric dynamics, mostly in the 
midlatitudes, and tropical outgoing longwave radiation flux (OLR) – representing midlatitude 
dynamics, tropical convection, and their interactions. These variables are time-averaged within a 
5-day moving boxcar with the climatological mean removed. This produces our state variable:  
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( (1), 

and 30 years of state variable data is used to define a propagator-matrix G that evolves x from 
time 𝑡 to 𝑡 + ∆𝑡:  

x%&∆% = Gx% (2). 
The propagator G is either defined for the subseasonal forecast range of interest directly (i.e. 
Markov Modeling) or is defined for a shorter range that is then applied in an log-linear framework 



to produce forecasts at the desired subseasonal range (i.e. Linear Inverse Modeling). In Linear 
Inverse Modeling, the linear inverse model (the LIM) is computed from the covariance matrix of 
x at lags of 0 (C") and 𝜏 days (C(): 

L = 𝑙𝑛2C(𝑪")*4 𝜏⁄  (3). 
A forecast is produced by assuming that the relationship defined by L is extensible to longer 
forecast lead-times by linearly scaling L by the desired forecast length, ∆𝑡: 

x(𝑡" + ∆𝑡) = 𝑒L	∆%	x(𝑡") (4). 
It is clear from Equation 2 that 𝑒L	∆%~G in linear inverse modeling. The covariance lag 𝜏 is typically 
7 days for our model. A LIM produced from 2-degree resolution global data from the National 
Center for Atmospheric Research (NCAR) Climate Forecast System Reanalysis (CFSR) performs 
better than a persistence model or an autoregressive model with a 1-day lag when evaluated 
against an L2 norm (Fig. 1). 
 

 
Figure 1. Forecast errors for lags from 1-20 days from the LIM (circles), a 1-day-lag autoregressive model (triangles), 
and a bare persistence forecast (squares). The dashed line represents the theoretically defined expectation of the 
LIM error. 

 
Since our interest is in modeling blocking, we produced a Pacific blocking norm by compositing 
historical Pacific blocking events and projecting the composite into the LIM’s EOF subspace, 
retaining only the 𝜓!"" and 𝜓#$" components (Fig. 2). 
 



 
Figure 2. Blocking norm projected into EOF subspace of LIM. (a) Anomalous 7-day averaged 200 hPa streamfunction. 
(b) Anomalous 7-day averaged 850 hPa streamfunction. 

 
The blocking norm in EOF space, denoted by N, is used to derive optimal initial conditions that 
grow in the direction of Pacific blocking. For a chosen lead-time ∆𝑡, the leading eigenvector of 
G-NN-G defines the optimal initial conditions to maximize growth in the direction defined by N. 
The computation of this optimal and examination of its structure is central to research into 
subseasonal blocking dynamics and prediction performed in this study. 
 
3. Blocking Dynamics 
 
The optimal initial conditions to grow a block based on the Pacific blocking norm is computed in 
the a-LIM for a 15-day forecast period (Fig.3). 
 



 
Figure 3. Optimal initial conditions to grow a block in the a-LIM for a 15-day forecast period. (a) Anomalous 7-day 
averaged 200 hPa stream function. (b) Anomalous 7-day averaged 850 hPa stream function. (c) Anomalous 7-day 
averaged tropical OLR. 

 
The optimal conditions to grow a block by day-15 as defined by the blocking norm includes a 200 
hPa anticyclone over the coast of British Columbia and significant baroclinicity resulting in a low-
amplitude oppositely-signed anomalous flow at 850 hPa. 
 
When evolved in the a-LIM for a 15-day forecast, the model produces a strong Pacific block (Fig. 
4). The anticyclone at 200 hPa appears to retrograde westward and amplify over the 15-day 
period, producing a strong Pacific block at 200 hPa projecting strongly onto the PNA, and a broad 
anticyclone at 850 hPa. The tropical OLR in the equatorial tropics has characteristics of ENSO 
variability in the central Pacific and MJO variability in the Indian Ocean. 
 



 
Figure 4. LIM day-15 forecast state from optimal initial conditions. (a) Anomalous 7-day averaged 200 hPa stream 
function. (b) Anomalous 7-day averaged 850 hPa stream function. (c) Anomalous 7-day averaged tropical OLR. 

 
Growth in the direction of N from 𝑡 to 𝑡 + ∆𝑡 is defined by: 

𝑔𝑟𝑜𝑤𝑡ℎ = x(%&∆%)TNx(%&∆%)
x(%)TDx(%)

 (5), 

where D defines an initial norm; in this case the initial norm is chosen as the L2 norm and D is an 
identity matrix. The amount of possible growth computed as an amplification factor shows that 
maximum blocking growth appears at forecasts of 10 days, and positive growth is possible as far 
out as 28 days (Fig. 5). 



 
Figure 5. Maximum system growth in the LIM, as defined by the blocking norm, as a function of lead time. Adapted 
from Figure 7 of Breeden et al. (2020) 

 
For a lead time of 14 days, the optimal initial conditions for blocking growth are similar in form 
to those of Figure 3, with an anticyclonic anomaly at 200 hPa off the coast of British Columbia 
and OLR growth over 14 days that implies both ENSO and MJO evolution (Fig. 6). The optimal 
initial condition is separated into the streamfunction (𝜓!"" and 𝜓#$") and OLR components, and 
the LIM is initialized with each component individually to evolve the state 14 days, in order to 
evaluate the relative contribution of both components (midlatitude dynamics and tropical 
convection). For a lead time of 14 days, the majority of the blocking growth can be attributed to 
the streamfunction component of the optimal initial state, though the OLR component of the 
optimal initial state contributes a not-insignificant portion as well as driving much of the OLR 
evolution (Fig. 7). 
 
When evaluating the contribution of blocking amplitude in the LIM forecast over a range of 
forecast lead times, a clear pattern emerges; as the forecast lead time increases, the OLR 
component of the optimal initial conditions contributes a larger portion to the total blocking 
growth (Fig. 8), and at a 21-day lead time the blocking is contributed to equally by the 
streamfunction and OLR components of the optimal initial conditions. 
 
 
 



 
Figure 6. Optimal initial conditions for blocking growth with a lead time of 14 days, with evolved state after 14 days 
in the LIM. Adapted from Figure 8 of Breeden et al. (2020). 

 

 
Figure 7. The 14 day evolved state in the LIM from initializing with (panels a-c) only the OLR component of the 
optimal initial state, and (panels d-f) only the 850 hPa and 200 hPa streamfunction component of the optimal 
initial state. Adapted from Figure 10 of Breeden et al. (2020). 



 

 
Figure 8. Block amplitude in the model as a function of forecast lead time for the entire optimal initial condition, the 
OLR component only, and the streamfunction component only, for (a) a 7-day optimization time, (b) a 14-day 
optimization time, and (c) a 21-day optimization time. Adapted from Figure 13 of Breeden et al. (2020). 

 
4. Blocking Prediction 
 
A core component of our proposed research was focused on using the LIM to evaluate the 
deficiencies of numerical weather prediction (NWP) of blocking events at subseasonal timescales. 



This is accomplished through Markov models (computing G) or LIMs (computing L) trained on 
lagged covariance of x in the model forecast rather than in lagged analysis. The Markov model or 
LIM produced from the forecast covariance was anticipated to retain an empirically derived 
representation of the physics driving the model, which can be directly compared to the physics 
driving the real evolution of the atmosphere in the low-dimensional space of the Markov 
model/LIM. The blocking prediction of the LIM depends on the strength of the relationship 
between the projection of the initial state onto the optimal initial conditions and the projection 
of the final state onto the blocking norm – how predictive is the optimal initial conditions in 
predicting a block? How often does a state that projects strongly onto the optimal initial 
conditions produce a block within the prescribed forecast lead time?  
 
We produced two LIMs from 30 years of Global Ensemble Forecast System (GEFS) 
reanalysis/reforecast data – an analysis-based LIM (a-LIM) computed from time-lagged analyses 
and a forecast-based LIM (f-LIM) computed from the covariance between the analysis and GEFS 
(control) forecast. A direct comparison of LIM components shows there are global differences in 
physics driving the two models (Fig. 9). 
 

 
Figure 9. LIM L-matrix components of the (a) a-LIM, and (b) f-LIM. The differences (a-LIM minus f-LIM) is provided 
in panel c. 



 
The optimal initial condition for growing blocks in  
 
A blocking-index is produced for the analysis and the 21-day LIM forecast as a normalized 
projection onto the blocking norm. While several blocked events in the verification are missed 
by both the a-LIM and f-LIM forecast, the prolonged periods of negative index (indicating large-
scale cyclonic flow in the north Pacific) are well forecast (Fig. 10). 
 

 
Figure 10. Blocking index over 30-year dataset. Verification is in gray, a-LIM 21-day forecast is in blue, and f-LIM 21-day forecast 
is in red. 

 
In a scatter-plot, the a-LIM demonstrates greater skill in forecasting blocks than the f-LIM, with 
the 95% confidence ellipse of the covariance between the forecast and verification adhering 
closer to the y=x (perfect forecast) line (Fig. 11). The correlation of the 21-day forecast to 
verification is r=0.53 in the a-LIM and r=0.46 in the f-LIM. The optimal initial conditions in the f-
LIM for blocking drives amplification that is larger than that of the optimal initial conditions in 
the a-LIM for lead times in the first 2 weeks of the forecast, but in the second 2 weeks the f-LIM 
is deficient in growing blocks (Fig. 12). 
 
The impact of manipulating parts of the f-LIM L-matrix on blocking growth is explored with two 
techniques: (1) a regression map computed from random perturbation of the elements of the L-
matrix, and (2) a map computed from replacing elements one-by-one of the f-LIM with 
corresponding elements of the a-LIM (Fig. 13). In both cases, there are significant sensitivities of 
blocking to elements of the f-LIM’s L-matrix that take the form of vertical columns, representing 
the impact of one EOF on the entire system. When five of these columns are selected (two 
representing the system-wide interaction of OLR EOFs and three representing the system-wide 
interaction of 200 hPa streamfunction EOFs) and replaced with corresponding columns of the a-
LIM, blocking growth in the modified f-LIM is greatly enhanced at 21 days (Fig. 14). 
 



 
Figure 11. Scatter plot of projection of verifying day-21 analysis onto blocking norm versus the projection of the 21-
day a-LIM forecast (blue) and f-LIM forecast (red) onto the blocking norm. Projections are normalized, with a perfect 
forecast falling along the black line. The blue (red) ellipse represents the 95% bounds of the covariance for the a-LIM 
(f-LIM) forecast against the verification. 

 

 
Figure 12. Amplification factor of blocking growth in the a-LIM (blue) and f-LIM (red) as a function of forecast lead 
time. The circles highlight values at 21-days.  



 

 
Figure 13. Sensitivity of 21-day blocking in the f-LIM to elements of the L-matrix via (a) regression map based on 
random perturbation of the L-matrix, and (b) element-by-element replacement of the f-LIM L-matrix components 
with corresponding a-LIM components. 

 

 
Figure 14. As Figure 12, but including blocking growth in the modified f-LIM (pink dashed line) that replaces 5 
columns of the L-matrix with corresponding columns of the a-LIM, based on sensitivity tests from Figure 13. 

The ability to capture NWP limitations in blocking prediction was also explored in Markov models, 
where the G-matrix is computed directly through lagged covariance. Climate Forecast System 
(CFS) reanalysis/reforecast data was used to produce the analysis-trained Markov model (A-MKV) 
and forecast-trained Markov model (C-MKV) for 1-4 week lead times, and the forecast 
performance for blocking was compared directly to the CFS NWP forecast (C-NWP). Correlation 



of the blocking index in the forecast to verification demonstrates that C-NWP is superior to 
Markov models for 1-2 week lead times, but in weeks 3 and 4 the Markov model is superior (Fig. 
15a); in addition, the Markov model trained on CFS forecasts decreases in skill at weeks 3 and 4 
in a manner very similar to the CFS NWP forecast. This demonstrates that the empirical model 
trained on NWP model forecasts not only expresses reduced skill in blocking forecasts at 
subseasonal range, but the reduction in skill is commiserate with the reduction in skill of the NWP 
model forecast itself. This experiment shows that this technique is capable of retaining NWP 
model forecast deficiencies in a low-dimensional space where they can be investigated more 
easily. 
 

 
Figure 15. Correlation of the forecast blocking index with the verifying blocking index for forecasts with 1-4 week 
lead times from A-MKV  (blue), C-MKV (magenta), and C-NWP (red). (b) Timeseries of the verifying blocking index 
(gray) with the week-4 forecast blocking index from A-MKV (blue, top), C-MKV (magenta, middle), and the C-NWP 
(red, bottom). 

 
5. Conclusion 
 
We have demonstrated that some aspects of challenges facing subseasonal range NWP can be 
contained within a drastically dimensionally-reduced space and inferred through linear modeling 
of atmospheric physics as expressed by both the real atmosphere (via reanalysis) and the NWP 
model (via reforecasts). Further, this can be achieved utilizing many of the same state variable 
components that are used in typical subseasonal forecast verification, requiring minimal 
additional reanalysis/reforecast data. These tools can be used to interrogate the differences 
between “real” physics and “model” physics, in the dimensionally-reduced space, to identify key 
interactions that are leading to reduced NWP skill at subseasonal ranges. This technique can also 
be applied to transition seamlessly from the week 1-2 NWP forecasting range to the week 3-4 
subseasonal forecasting range, through utilizing the 5-day average NWP forecast as initial 
conditions for the linear inverse or Markov model. A forecast of this form would be able to take 
advantage of the near-range skill of the NWP model and the far-range skill of the empirical model. 
 
6. Highlights of Accomplishments  
 

• Development of 2-level/2-region streamfunction a-LIM, passing sanity tests 
• Identification/development of blocking norm 



• Development of LIM-derived optimal initial state for subseasonal-range growth of 
Pacific blocks 

• Exploration of blocking growth in LIM separated into its midlatitude 
(streamfunction) and tropical (OLR) forcing components 

• Development LIM formulation of GEFS-forecast driven low-dimensionality (LIM-
like) forecast for investigating the role of model physics on subseasonal-range 
blocking forecasts 

• Demonstration of a CFS-forecast driven Markov model retaining low skill in 
blocking forecasts at long (wk 3-4) range, similar to actual CFS model forecast 

• Evaluation of differences in optimal initial structures and growth of blocks 
between CFS-forecast and analysis driven Markov models 

 
7. Transitions to Applications  
 
No transition to application at this time. A companion LIM has been developed in the 
Python programming language for use by the public. 
 
8. Publications from the Project  
 
Two papers have been published from this project in 2019: 
 
Albers, J. R., and M. Newman, 2019: A priori identification of skillful extratropical 
subseasonal forecasts. Geophysical Research Letters, 46, 12527-12536, doi: 
10.1029/2019GL085270 
 
Breeden, M.L., B.T. Hoover, M. Newman, and D.J. Vimont, 2020: Optimal North Pacific 
Blocking Precursors and Their Deterministic Subseasonal Evolution during Boreal 
Winter. Monthly Weather Review, 148, 739–761, doi: 10.1175/MWR-D-19-0273.1 
 
9. PI Contact Information 
 
Contact the lead-PI through brett.hoover@noaa.gov 
 
10. Budget for Coming Year 
 
This is the final report for this project, there are no additional funds distributed in the 
coming year. 
 
11. Future Work 
 
This work constitutes the effort made on the entirety of the project. 
 


